Documentation generated from fossil trunk

NAME

math::statistics -
Basic statistical functions and procedures

SYNOPSIS

package require Tcl 8
package require math::statistics 0.5
::math::statistics::mean data
::math::statistics::min data
::math::statistics::max data
::math::statistics::number data
::math::statistics::stdev data
::math::statistics::var data
::math::statistics::pstdev data
::math::statistics::pvar data
::math::statistics::median data
::math::statistics::basic-stats data
::math::statistics::histogram limits values
::math::statistics::corr data1 data2
::math::statistics::interval-mean-stdev data confidence
::math::statistics::t-test-mean data est_mean est_stdev confidence
::math::statistics::test-normal data confidence
::math::statistics::lillieforsFit data
::math::statistics::quantiles data confidence
::math::statistics::quantiles limits counts confidence
::math::statistics::autocorr data
::math::statistics::crosscorr data1 data2
::math::statistics::mean-histogram-limits mean stdev number
::math::statistics::minmax-histogram-limits min max number
::math::statistics::linear-model xdata ydata intercept
::math::statistics::linear-residuals xdata ydata intercept
::math::statistics::test-2x2 n11 n21 n12 n22
::math::statistics::print-2x2 n11 n21 n12 n22
::math::statistics::control-xbar data  ? nsamples ? 
::math::statistics::control-Rchart data  ? nsamples ? 
::math::statistics::test-xbar control data
::math::statistics::test-Rchart control data
::math::statistics::tstat dof  ? alpha ? 
::math::statistics::mv-wls wt1 weights_and_values
::math::statistics::mv-ols values
::math::statistics::pdf-normal mean stdev value
::math::statistics::pdf-exponential mean value
::math::statistics::pdf-uniform xmin xmax value
::math::statistics::pdf-gamma alpha beta value
::math::statistics::pdf-poisson mu k
::math::statistics::pdf-chisquare df value
::math::statistics::pdf-student-t df value
::math::statistics::pdf-beta a b value
::math::statistics::cdf-normal mean stdev value
::math::statistics::cdf-exponential mean value
::math::statistics::cdf-uniform xmin xmax value
::math::statistics::cdf-students-t degrees value
::math::statistics::cdf-gamma alpha beta value
::math::statistics::cdf-poisson mu k
::math::statistics::cdf-beta a b value
::math::statistics::random-normal mean stdev number
::math::statistics::random-exponential mean number
::math::statistics::random-uniform xmin xmax number
::math::statistics::random-gamma alpha beta number
::math::statistics::random-chisquare df number
::math::statistics::random-student-t df number
::math::statistics::random-beta a b number
::math::statistics::histogram-uniform xmin xmax limits number
::math::statistics::incompleteGamma x p  ? tol ? 
::math::statistics::incompleteBeta a b x  ? tol ? 
::math::statistics::filter varname data expression
::math::statistics::map varname data expression
::math::statistics::samplescount varname list expression
::math::statistics::subdivide 
::math::statistics::test-Kruskal-Wallis confidence args
::math::statistics::analyse-Kruskal-Wallis args
::math::statistics::group-rank args
::math::statistics::plot-scale canvas xmin xmax ymin ymax
::math::statistics::plot-xydata canvas xdata ydata tag
::math::statistics::plot-xyline canvas xdata ydata tag
::math::statistics::plot-tdata canvas tdata tag
::math::statistics::plot-tline canvas tdata tag
::math::statistics::plot-histogram canvas counts limits tag

DESCRIPTION

The math::statistics package contains functions and procedures for basic statistical data analysis, such as:

It is meant to help in developing data analysis applications or doing ad hoc data analysis, it is not in itself a full application, nor is it intended to rival with full (non-)commercial statistical packages.

The purpose of this document is to describe the implemented procedures and provide some examples of their usage. As there is ample literature on the algorithms involved, we refer to relevant text books for more explanations. The package contains a fairly large number of public procedures. They can be distinguished in three sets: general procedures, procedures that deal with specific statistical distributions, list procedures to select or transform data and simple plotting procedures (these require Tk). Note: The data that need to be analyzed are always contained in a simple list. Missing values are represented as empty list elements.

GENERAL PROCEDURES

The general statistical procedures are:
::math::statistics::mean data
Determine the mean value of the given list of data.
TypeNameMode
listdata
  - List of data

::math::statistics::min data
Determine the minimum value of the given list of data.
TypeNameMode
listdata
  - List of data

::math::statistics::max data
Determine the maximum value of the given list of data.
TypeNameMode
listdata
  - List of data

::math::statistics::number data
Determine the number of non-missing data in the given list
TypeNameMode
listdata
  - List of data

::math::statistics::stdev data
Determine the sample standard deviation of the data in the given list
TypeNameMode
listdata
  - List of data

::math::statistics::var data
Determine the sample variance of the data in the given list
TypeNameMode
listdata
  - List of data

::math::statistics::pstdev data
Determine the population standard deviation of the data in the given list
TypeNameMode
listdata
  - List of data

::math::statistics::pvar data
Determine the population variance of the data in the given list
TypeNameMode
listdata
  - List of data

::math::statistics::median data
Determine the median of the data in the given list (Note that this requires sorting the data, which may be a costly operation)
TypeNameMode
listdata
  - List of data

::math::statistics::basic-stats data
Determine a list of all the descriptive parameters: mean, minimum, maximum, number of data, sample standard deviation, sample variance, population standard deviation and population variance.
(This routine is called whenever either or all of the basic statistical parameters are required. Hence all calculations are done and the relevant values are returned.)
TypeNameMode
listdata
  - List of data

::math::statistics::histogram limits values
Determine histogram information for the given list of data. Returns a list consisting of the number of values that fall into each interval. (The first interval consists of all values lower than the first limit, the last interval consists of all values greater than the last limit. There is one more interval than there are limits.)
TypeNameMode
listlimits
  - List of upper limits (in ascending order) for the intervals of the histogram.
listvalues
  - List of data

::math::statistics::corr data1 data2
Determine the correlation coefficient between two sets of data.
TypeNameMode
listdata1
  - First list of data
listdata2
  - Second list of data

::math::statistics::interval-mean-stdev data confidence
Return the interval containing the mean value and one containing the standard deviation with a certain level of confidence (assuming a normal distribution)
TypeNameMode
listdata
  - List of raw data values (small sample)
floatconfidence
  - Confidence level (0.95 or 0.99 for instance)

::math::statistics::t-test-mean data est_mean est_stdev confidence
Test whether the mean value of a sample is in accordance with the estimated normal distribution with a certain level of confidence. Returns 1 if the test succeeds or 0 if the mean is unlikely to fit the given distribution.
TypeNameMode
listdata
  - List of raw data values (small sample)
floatest_mean
  - Estimated mean of the distribution
floatest_stdev
  - Estimated stdev of the distribution
floatconfidence
  - Confidence level (0.95 or 0.99 for instance)

::math::statistics::test-normal data confidence
Test whether the given data follow a normal distribution with a certain level of confidence. Returns 1 if the data are normally distributed within the level of confidence, returns 0 if not. The underlying test is the Lilliefors test.
TypeNameMode
listdata
  - List of raw data values
floatconfidence
  - Confidence level (one of 0.80, 0.90, 0.95 or 0.99)

::math::statistics::lillieforsFit data
Returns the goodness of fit to a normal distribution according to Lilliefors. The higher the number, the more likely the data are indeed normally distributed. The test requires at least five data points.
TypeNameMode
listdata
  - List of raw data values

::math::statistics::quantiles data confidence
Return the quantiles for a given set of data
TypeNameMode
listdata
  - List of raw data values
floatconfidence
  - Confidence level (0.95 or 0.99 for instance)

::math::statistics::quantiles limits counts confidence
Return the quantiles based on histogram information (alternative to the call with two arguments)
TypeNameMode
listlimits
  - List of upper limits from histogram
listcounts
  - List of counts for for each interval in histogram
floatconfidence
  - Confidence level (0.95 or 0.99 for instance)

::math::statistics::autocorr data
Return the autocorrelation function as a list of values (assuming equidistance between samples, about 1/2 of the number of raw data)
The correlation is determined in such a way that the first value is always 1 and all others are equal to or smaller than 1. The number of values involved will diminish as the "time" (the index in the list of returned values) increases
TypeNameMode
listdata
  - Raw data for which the autocorrelation must be determined

::math::statistics::crosscorr data1 data2
Return the cross-correlation function as a list of values (assuming equidistance between samples, about 1/2 of the number of raw data)
The correlation is determined in such a way that the values can never exceed 1 in magnitude. The number of values involved will diminish as the "time" (the index in the list of returned values) increases.
TypeNameMode
listdata1
  - First list of data
listdata2
  - Second list of data

::math::statistics::mean-histogram-limits mean stdev number
Determine reasonable limits based on mean and standard deviation for a histogram Convenience function - the result is suitable for the histogram function.
TypeNameMode
floatmean
  - Mean of the data
floatstdev
  - Standard deviation
intnumber
  - Number of limits to generate (defaults to 8)

::math::statistics::minmax-histogram-limits min max number
Determine reasonable limits based on a minimum and maximum for a histogram
Convenience function - the result is suitable for the histogram function.
TypeNameMode
floatmin
  - Expected minimum
floatmax
  - Expected maximum
intnumber
  - Number of limits to generate (defaults to 8)

::math::statistics::linear-model xdata ydata intercept
Determine the coefficients for a linear regression between two series of data (the model: Y = A + B*X). Returns a list of parameters describing the fit
TypeNameMode
listxdata
  - List of independent data
listydata
  - List of dependent data to be fitted
booleanintercept
  - (Optional) compute the intercept (1, default) or fit to a line through the origin (0)
The result consists of the following list:
  • (Estimate of) Intercept A
  • (Estimate of) Slope B
  • Standard deviation of Y relative to fit
  • Correlation coefficient R2
  • Number of degrees of freedom df
  • Standard error of the intercept A
  • Significance level of A
  • Standard error of the slope B
  • Significance level of B

::math::statistics::linear-residuals xdata ydata intercept
Determine the difference between actual data and predicted from the linear model.
Returns a list of the differences between the actual data and the predicted values.
TypeNameMode
listxdata
  - List of independent data
listydata
  - List of dependent data to be fitted
booleanintercept
  - (Optional) compute the intercept (1, default) or fit to a line through the origin (0)

::math::statistics::test-2x2 n11 n21 n12 n22
Determine if two set of samples, each from a binomial distribution, differ significantly or not (implying a different parameter).
Returns the "chi-square" value, which can be used to the determine the significance.
TypeNameMode
intn11
  - Number of outcomes with the first value from the first sample.
intn21
  - Number of outcomes with the first value from the second sample.
intn12
  - Number of outcomes with the second value from the first sample.
intn22
  - Number of outcomes with the second value from the second sample.

::math::statistics::print-2x2 n11 n21 n12 n22
Determine if two set of samples, each from a binomial distribution, differ significantly or not (implying a different parameter).
Returns a short report, useful in an interactive session.
TypeNameMode
intn11
  - Number of outcomes with the first value from the first sample.
intn21
  - Number of outcomes with the first value from the second sample.
intn12
  - Number of outcomes with the second value from the first sample.
intn22
  - Number of outcomes with the second value from the second sample.

::math::statistics::control-xbar data ? nsamples ?
Determine the control limits for an xbar chart. The number of data in each subsample defaults to 4. At least 20 subsamples are required.
Returns the mean, the lower limit, the upper limit and the number of data per subsample.
TypeNameMode
listdata
  - List of observed data
intnsamples
  - Number of data per subsample

::math::statistics::control-Rchart data ? nsamples ?
Determine the control limits for an R chart. The number of data in each subsample (nsamples) defaults to 4. At least 20 subsamples are required.
Returns the mean range, the lower limit, the upper limit and the number of data per subsample.
TypeNameMode
listdata
  - List of observed data
intnsamples
  - Number of data per subsample

::math::statistics::test-xbar control data
Determine if the data exceed the control limits for the xbar chart.
Returns a list of subsamples (their indices) that indeed violate the limits.
TypeNameMode
listcontrol
  - Control limits as returned by the "control-xbar" procedure
listdata
  - List of observed data

::math::statistics::test-Rchart control data
Determine if the data exceed the control limits for the R chart.
Returns a list of subsamples (their indices) that indeed violate the limits.
TypeNameMode
listcontrol
  - Control limits as returned by the "control-Rchart" procedure
listdata
  - List of observed data

MULTIVARIATE LINEAR REGRESSION

Besides the linear regression with a single independent variable, the statistics package provides two procedures for doing ordinary least squares (OLS) and weighted least squares (WLS) linear regression with several variables. They were written by Eric Kemp-Benedict.

In addition to these two, it provides a procedure (tstat) for calculating the value of the t-statistic for the specified number of degrees of freedom that is required to demonstrate a given level of significance.

Note: These procedures depend on the math::linearalgebra package.

Description of the procedures

::math::statistics::tstat dof ? alpha ?
Returns the value of the t-distribution t* satisfying
    P(t*)  =  1 - alpha/2
    P(-t*) =  alpha/2

for the number of degrees of freedom dof.
Given a sample of normally-distributed data x, with an estimate xbar for the mean and sbar for the standard deviation, the alpha confidence interval for the estimate of the mean can be calculated as
      ( xbar - t* sbar , xbar + t* sbar)

The return values from this procedure can be compared to an estimated t-statistic to determine whether the estimated value of a parameter is significantly different from zero at the given confidence level.
TypeNameMode
intdof
  Number of degrees of freedom
floatalpha
  Confidence level of the t-distribution. Defaults to 0.05.

::math::statistics::mv-wls wt1 weights_and_values
Carries out a weighted least squares linear regression for the data points provided, with weights assigned to each point.
The linear model is of the form
    y = b0 + b1 * x1 + b2 * x2 ... + bN * xN + error

and each point satisfies
    yi = b0 + b1 * xi1 + b2 * xi2 + ... + bN * xiN + Residual_i


The procedure returns a list with the following elements:
  • The r-squared statistic
  • The adjusted r-squared statistic
  • A list containing the estimated coefficients b1, ... bN, b0 (The constant b0 comes last in the list.)
  • A list containing the standard errors of the coefficients
  • A list containing the 95% confidence bounds of the coefficients, with each set of bounds returned as a list with two values
Arguments:
TypeNameMode
listweights_and_values
  A list consisting of: the weight for the first observation, the data for the first observation (as a sublist), the weight for the second observation (as a sublist) and so on. The sublists of data are organised as lists of the value of the dependent variable y and the independent variables x1, x2 to xN.

::math::statistics::mv-ols values
Carries out an ordinary least squares linear regression for the data points provided.
This procedure simply calls ::mvlinreg::wls with the weights set to 1.0, and returns the same information.
Example of the use:
# Store the value of the unicode value for the "+/-" character
set pm "\u00B1"

# Provide some data
set data {{  -.67  14.18  60.03 -7.5  }
          { 36.97  15.52  34.24 14.61 }
          {-29.57  21.85  83.36 -7.   }
          {-16.9   11.79  51.67 -6.56 }
          { 14.09  16.24  36.97 -12.84}
          { 31.52  20.93  45.99 -25.4 }
          { 24.05  20.69  50.27  17.27}
          { 22.23  16.91  45.07  -4.3 }
          { 40.79  20.49  38.92  -.73 }
          {-10.35  17.24  58.77  18.78}}

# Call the ols routine
set results [::math::statistics::mv-ols $data]

# Pretty-print the results
puts "R-squared: [lindex $results 0]"
puts "Adj R-squared: [lindex $results 1]"
puts "Coefficients $pm s.e. -- \[95% confidence interval\]:"
foreach val [lindex $results 2] se [lindex $results 3] bounds [lindex $results 4] {
    set lb [lindex $bounds 0]
    set ub [lindex $bounds 1]
    puts "   $val $pm $se -- \[$lb to $ub\]"
}

STATISTICAL DISTRIBUTIONS

In the literature a large number of probability distributions can be found. The statistics package supports: In principle for each distribution one has procedures for: The following procedures have been implemented:
::math::statistics::pdf-normal mean stdev value
Return the probability of a given value for a normal distribution with given mean and standard deviation.
TypeNameMode
floatmean
  - Mean value of the distribution
floatstdev
  - Standard deviation of the distribution
floatvalue
  - Value for which the probability is required

::math::statistics::pdf-exponential mean value
Return the probability of a given value for an exponential distribution with given mean.
TypeNameMode
floatmean
  - Mean value of the distribution
floatvalue
  - Value for which the probability is required

::math::statistics::pdf-uniform xmin xmax value
Return the probability of a given value for a uniform distribution with given extremes.
TypeNameMode
floatxmin
  - Minimum value of the distribution
floatxmin
  - Maximum value of the distribution
floatvalue
  - Value for which the probability is required

::math::statistics::pdf-gamma alpha beta value
Return the probability of a given value for a Gamma distribution with given shape and rate parameters
TypeNameMode
floatalpha
  - Shape parameter
floatbeta
  - Rate parameter
floatvalue
  - Value for which the probability is required

::math::statistics::pdf-poisson mu k
Return the probability of a given number of occurrences in the same interval (k) for a Poisson distribution with given mean (mu)
TypeNameMode
floatmu
  - Mean number of occurrences
intk
  - Number of occurences

::math::statistics::pdf-chisquare df value
Return the probability of a given value for a chi square distribution with given degrees of freedom
TypeNameMode
floatdf
  - Degrees of freedom
floatvalue
  - Value for which the probability is required

::math::statistics::pdf-student-t df value
Return the probability of a given value for a Student's t distribution with given degrees of freedom
TypeNameMode
floatdf
  - Degrees of freedom
floatvalue
  - Value for which the probability is required

::math::statistics::pdf-beta a b value
Return the probability of a given value for a Beta distribution with given shape parameters
TypeNameMode
floata
  - First shape parameter
floatb
  - First shape parameter
floatvalue
  - Value for which the probability is required

::math::statistics::cdf-normal mean stdev value
Return the cumulative probability of a given value for a normal distribution with given mean and standard deviation, that is the probability for values up to the given one.
TypeNameMode
floatmean
  - Mean value of the distribution
floatstdev
  - Standard deviation of the distribution
floatvalue
  - Value for which the probability is required

::math::statistics::cdf-exponential mean value
Return the cumulative probability of a given value for an exponential distribution with given mean.
TypeNameMode
floatmean
  - Mean value of the distribution
floatvalue
  - Value for which the probability is required

::math::statistics::cdf-uniform xmin xmax value
Return the cumulative probability of a given value for a uniform distribution with given extremes.
TypeNameMode
floatxmin
  - Minimum value of the distribution
floatxmin
  - Maximum value of the distribution
floatvalue
  - Value for which the probability is required

::math::statistics::cdf-students-t degrees value
Return the cumulative probability of a given value for a Student's t distribution with given number of degrees.
TypeNameMode
intdegrees
  - Number of degrees of freedom
floatvalue
  - Value for which the probability is required

::math::statistics::cdf-gamma alpha beta value
Return the cumulative probability of a given value for a Gamma distribution with given shape and rate parameters
TypeNameMode
floatalpha
  - Shape parameter
floatbeta
  - Rate parameter
floatvalue
  - Value for which the cumulative probability is required

::math::statistics::cdf-poisson mu k
Return the cumulative probability of a given number of occurrences in the same interval (k) for a Poisson distribution with given mean (mu)
TypeNameMode
floatmu
  - Mean number of occurrences
intk
  - Number of occurences

::math::statistics::cdf-beta a b value
Return the cumulative probability of a given value for a Beta distribution with given shape parameters
TypeNameMode
floata
  - First shape parameter
floatb
  - First shape parameter
floatvalue
  - Value for which the probability is required

::math::statistics::random-normal mean stdev number
Return a list of "number" random values satisfying a normal distribution with given mean and standard deviation.
TypeNameMode
floatmean
  - Mean value of the distribution
floatstdev
  - Standard deviation of the distribution
intnumber
  - Number of values to be returned

::math::statistics::random-exponential mean number
Return a list of "number" random values satisfying an exponential distribution with given mean.
TypeNameMode
floatmean
  - Mean value of the distribution
intnumber
  - Number of values to be returned

::math::statistics::random-uniform xmin xmax number
Return a list of "number" random values satisfying a uniform distribution with given extremes.
TypeNameMode
floatxmin
  - Minimum value of the distribution
floatxmax
  - Maximum value of the distribution
intnumber
  - Number of values to be returned

::math::statistics::random-gamma alpha beta number
Return a list of "number" random values satisfying a Gamma distribution with given shape and rate parameters
TypeNameMode
floatalpha
  - Shape parameter
floatbeta
  - Rate parameter
intnumber
  - Number of values to be returned

::math::statistics::random-chisquare df number
Return a list of "number" random values satisfying a chi square distribution with given degrees of freedom
TypeNameMode
floatdf
  - Degrees of freedom
intnumber
  - Number of values to be returned

::math::statistics::random-student-t df number
Return a list of "number" random values satisfying a Student's t distribution with given degrees of freedom
TypeNameMode
floatdf
  - Degrees of freedom
intnumber
  - Number of values to be returned

::math::statistics::random-beta a b number
Return a list of "number" random values satisfying a Beta distribution with given shape parameters
TypeNameMode
floata
  - First shape parameter
floatb
  - Second shape parameter
intnumber
  - Number of values to be returned

::math::statistics::histogram-uniform xmin xmax limits number
Return the expected histogram for a uniform distribution.
TypeNameMode
floatxmin
  - Minimum value of the distribution
floatxmax
  - Maximum value of the distribution
listlimits
  - Upper limits for the buckets in the histogram
intnumber
  - Total number of "observations" in the histogram

::math::statistics::incompleteGamma x p ? tol ?
Evaluate the incomplete Gamma integral
                    1       / x               p-1
      P(p,x) =  --------   |   dt exp(-t) * t
                Gamma(p)  / 0

TypeNameMode
floatx
  - Value of x (limit of the integral)
floatp
  - Value of p in the integrand
floattol
  - Required tolerance (default: 1.0e-9)

::math::statistics::incompleteBeta a b x ? tol ?
Evaluate the incomplete Beta integral
TypeNameMode
floata
  - First shape parameter
floatb
  - Second shape parameter
floatx
  - Value of x (limit of the integral)
floattol
  - Required tolerance (default: 1.0e-9)

TO DO: more function descriptions to be added

DATA MANIPULATION

The data manipulation procedures act on lists or lists of lists:
::math::statistics::filter varname data expression
Return a list consisting of the data for which the logical expression is true (this command works analogously to the command foreach).
TypeNameMode
stringvarname
  - Name of the variable used in the expression
listdata
  - List of data
stringexpression
  - Logical expression using the variable name

::math::statistics::map varname data expression
Return a list consisting of the data that are transformed via the expression.
TypeNameMode
stringvarname
  - Name of the variable used in the expression
listdata
  - List of data
stringexpression
  - Expression to be used to transform (map) the data

::math::statistics::samplescount varname list expression
Return a list consisting of the counts of all data in the sublists of the "list" argument for which the expression is true.
TypeNameMode
stringvarname
  - Name of the variable used in the expression
listdata
  - List of sublists, each containing the data
stringexpression
  - Logical expression to test the data (defaults to "true").

::math::statistics::subdivide
Routine PM - not implemented yet
::math::statistics::test-Kruskal-Wallis confidence args
Check if the population medians of two or more groups are equal with a given confidence level, using the Kruskal-Wallis test.
TypeNameMode
floatconfidence
  - Confidence level to be used (0-1)
listargs
  - Two or more lists of data

::math::statistics::analyse-Kruskal-Wallis args
Compute the statistical parameters for the Kruskal-Wallis test. Returns the Kruskal-Wallis statistic and the probability that that value would occur assuming the medians of the populations are equal.
TypeNameMode
listargs
  - Two or more lists of data

::math::statistics::group-rank args
Rank the groups of data with respect to the complete set. Returns a list consisting of the group ID, the value and the rank (possibly a rational number, in case of ties) for each data item.
TypeNameMode
listargs
  - Two or more lists of data

PLOT PROCEDURES

The following simple plotting procedures are available:
::math::statistics::plot-scale canvas xmin xmax ymin ymax
Set the scale for a plot in the given canvas. All plot routines expect this function to be called first. There is no automatic scaling provided.
TypeNameMode
widgetcanvas
  - Canvas widget to use
floatxmin
  - Minimum x value
floatxmax
  - Maximum x value
floatymin
  - Minimum y value
floatymax
  - Maximum y value

::math::statistics::plot-xydata canvas xdata ydata tag
Create a simple XY plot in the given canvas - the data are shown as a collection of dots. The tag can be used to manipulate the appearance.
TypeNameMode
widgetcanvas
  - Canvas widget to use
floatxdata
  - Series of independent data
floatydata
  - Series of dependent data
stringtag
  - Tag to give to the plotted data (defaults to xyplot)

::math::statistics::plot-xyline canvas xdata ydata tag
Create a simple XY plot in the given canvas - the data are shown as a line through the data points. The tag can be used to manipulate the appearance.
TypeNameMode
widgetcanvas
  - Canvas widget to use
listxdata
  - Series of independent data
listydata
  - Series of dependent data
stringtag
  - Tag to give to the plotted data (defaults to xyplot)

::math::statistics::plot-tdata canvas tdata tag
Create a simple XY plot in the given canvas - the data are shown as a collection of dots. The horizontal coordinate is equal to the index. The tag can be used to manipulate the appearance. This type of presentation is suitable for autocorrelation functions for instance or for inspecting the time-dependent behaviour.
TypeNameMode
widgetcanvas
  - Canvas widget to use
listtdata
  - Series of dependent data
stringtag
  - Tag to give to the plotted data (defaults to xyplot)

::math::statistics::plot-tline canvas tdata tag
Create a simple XY plot in the given canvas - the data are shown as a line. See plot-tdata for an explanation.
TypeNameMode
widgetcanvas
  - Canvas widget to use
listtdata
  - Series of dependent data
stringtag
  - Tag to give to the plotted data (defaults to xyplot)

::math::statistics::plot-histogram canvas counts limits tag
Create a simple histogram in the given canvas
TypeNameMode
widgetcanvas
  - Canvas widget to use
listcounts
  - Series of bucket counts
listlimits
  - Series of upper limits for the buckets
stringtag
  - Tag to give to the plotted data (defaults to xyplot)

THINGS TO DO

The following procedures are yet to be implemented:

EXAMPLES

The code below is a small example of how you can examine a set of data:


# Simple example:
# - Generate data (as a cheap way of getting some)
# - Perform statistical analysis to describe the data
#
package require math::statistics

#
# Two auxiliary procs
#
proc pause {time} {
   set wait 0
   after [expr {$time*1000}] {set ::wait 1}
   vwait wait
}

proc print-histogram {counts limits} {
   foreach count $counts limit $limits {
      if { $limit != {} } {
         puts [format "<%12.4g\t%d" $limit $count]
         set prev_limit $limit
      } else {
         puts [format ">%12.4g\t%d" $prev_limit $count]
      }
   }
}

#
# Our source of arbitrary data
#
proc generateData { data1 data2 } {
   upvar 1 $data1 _data1
   upvar 1 $data2 _data2

   set d1 0.0
   set d2 0.0
   for { set i 0 } { $i < 100 } { incr i } {
      set d1 [expr {10.0-2.0*cos(2.0*3.1415926*$i/24.0)+3.5*rand()}]
      set d2 [expr {0.7*$d2+0.3*$d1+0.7*rand()}]
      lappend _data1 $d1
      lappend _data2 $d2
   }
   return {}
}

#
# The analysis session
#
package require Tk
console show
canvas .plot1
canvas .plot2
pack   .plot1 .plot2 -fill both -side top

generateData data1 data2

puts "Basic statistics:"
set b1 [::math::statistics::basic-stats $data1]
set b2 [::math::statistics::basic-stats $data2]
foreach label {mean min max number stdev var} v1 $b1 v2 $b2 {
   puts "$label\t$v1\t$v2"
}
puts "Plot the data as function of \"time\" and against each other"
::math::statistics::plot-scale .plot1  0 100  0 20
::math::statistics::plot-scale .plot2  0 20   0 20
::math::statistics::plot-tline .plot1 $data1
::math::statistics::plot-tline .plot1 $data2
::math::statistics::plot-xydata .plot2 $data1 $data2

puts "Correlation coefficient:"
puts [::math::statistics::corr $data1 $data2]

pause 2
puts "Plot histograms"
.plot2 delete all
::math::statistics::plot-scale .plot2  0 20 0 100
set limits         [::math::statistics::minmax-histogram-limits 7 16]
set histogram_data [::math::statistics::histogram $limits $data1]
::math::statistics::plot-histogram .plot2 $histogram_data $limits

puts "First series:"
print-histogram $histogram_data $limits

pause 2
set limits         [::math::statistics::minmax-histogram-limits 0 15 10]
set histogram_data [::math::statistics::histogram $limits $data2]
::math::statistics::plot-histogram .plot2 $histogram_data $limits d2
.plot2 itemconfigure d2 -fill red

puts "Second series:"
print-histogram $histogram_data $limits

puts "Autocorrelation function:"
set  autoc [::math::statistics::autocorr $data1]
puts [::math::statistics::map $autoc {[format "%.2f" $x]}]
puts "Cross-correlation function:"
set  crossc [::math::statistics::crosscorr $data1 $data2]
puts [::math::statistics::map $crossc {[format "%.2f" $x]}]

::math::statistics::plot-scale .plot1  0 100 -1  4
::math::statistics::plot-tline .plot1  $autoc "autoc"
::math::statistics::plot-tline .plot1  $crossc "crossc"
.plot1 itemconfigure autoc  -fill green
.plot1 itemconfigure crossc -fill yellow

puts "Quantiles: 0.1, 0.2, 0.5, 0.8, 0.9"
puts "First:  [::math::statistics::quantiles $data1 {0.1 0.2 0.5 0.8 0.9}]"
puts "Second: [::math::statistics::quantiles $data2 {0.1 0.2 0.5 0.8 0.9}]"


If you run this example, then the following should be clear:

BUGS, IDEAS, FEEDBACK

This document, and the package it describes, will undoubtedly contain bugs and other problems. Please report such in the category math :: statistics of the http://sourceforge.net/tracker/?group_id=12883. Please also report any ideas for enhancements you may have for either package and/or documentation.

KEYWORDS

mathematics, data analysis, statistics